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Semiflexible polymer on an anisotropic Bethe lattice
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The mean-square end-to-end distance ofNastep polymer on a Bethe lattice is calculated. We consider
semiflexible polymers placed on isotropic and anisotropic lattices. The distance on the Cayley tree is defined
by embedding the tree on a sufficiently high-dimensional Euclidean space, considering that every bend of the
polymer defines a direction orthogonal to all the previous ones. In the isotropic case, the result obtained for the
mean-square end-to-end distance turns out to be identical to the one obtaimeafahains without imme-
diate returns on an hypercubic lattice with the same coordination number of the Bethe lattice. For the general
case, we obtain asymptotic behavior in both the semiflexible and almost rigid limits.

PACS numbdis): 61.41+e, 05.50:-q

[. INTRODUCTION the number of stepl, the crossover to the three-dimensional
value occurring at rather high values Nf{5].

Chain polymers are often approximated as self-avoiding In this paper, we consider the problem of a semiflexible
and mutually avoiding walkéSAW's) on a lattice, and much polymer on a Bethe latticE7], exactly calculating the mean-
information about the behavior of polymers both in a melt orsquare end-to-end distance of walks on the Cayley tree
in solution has been understood theoretically through thivhich start at the central site and haMesteps, supposing
model[1,2]. One of the characterizations of the conforma-that the walks will never reach the surface of the Cayley tree,
tions of 2 walk is through its mean-square end-to-end disthys remaining in its core. We also calculate the mean-square
tance(R®), where the mean is taken over all configurationsgn.to-end distance in the case when the lattice is considered
of the[\l-steg wall;op the lattice. In the limN—c a scaling  4nisotropic, that is, when the edges of the lattice are not
behavior(R%)~N*" is observed, where the exponen®x-  oqivalent with respect to their occupation by a polymer
hibits a universal behavior, with a mean-field value 1/2 )4 The definition of the distance between two sites of the
ffr random wal,ks, which cprresp_ond to |d_eal chains, and Cayley tree is not obvious, and some possibilities exploring
;rr% Allefor SAW's on two-dimensional latticeg3], for ex- the fact that the tree may be embedded in a hypersurface of a

. non-Euclidean space have been gi{&h In this paper, how-

An interesting question arises of whether the chains ar.%ver, we used a simpler definition, considering the Cayley

not considered to be totally flexible, an energy being associ- : S .
ated with bends of the chain. This is often observed for reajree in the thermodynamic limit to be embedded in an

polymers. Let us, for simplicity, restrict ourselves to SAW'S |nf|2n|te-d|men5|ongl Euclidean space. The result for
on hypercubic lattices. In this case, consecutive steps of theX /(N.2) for the isotropic case has the scaling form of Eq.
walk are either in the same direction or a perpendicular di{1)- Not surprisingly the scaling functiaf(x) is equal to the
rection. So a Boltzmann factamay be associated with each ©ne obtained for random walks with no immediate return on
pair of perpendicular consecutive steps of walk. This prob2 hypercubic lattice, with the same coordination number of
lem of semiflexible polymerg&also called persistent or biased the Bethe lattice considered. This might be expected, since
walks) has been studied for some tirf#—6], and there oc- Bethe lattice calculations lead to mean-field critical expo-
curs a crossover in the behavior of the walk between a rodaents. Also, in the limitN— for nonzero values of, the

like behaviory,=1 for z=0, where the polymer is totally scaling behaviof R?)~N?” with the classical value'=1/2
stiff, and the usual behavior with a different exponerfor s verified in the expression fgR?)(N,z). It should be men-
nonzero values ot Stating this point more precisely, the tioned that our proposal of defining the Euclidean distance
mean-square end-to-end distance displays a scaling behavipgtween two points of the Cayley tree is similar to earlier

in the limit N—o0,z— 0,N¥z=const., which is given by results in the literature relating this distance to the chemical
distance, measured along the chi@h However, the distinc-

(R?)~N?"1F(zN"), (1) tion between the chemical and Euclidean distances is not

always properly considered in the literature, and this may
the observed values being=1 and¢=1. lead to contradicting resulf4.0], as we will discuss in more

The scaling function has a behaviB(x)~x?""2¥ in  detail in Sec. IV.
the limit x—oe. This scaling form has been verified through  In Sec. Il we define the model and calculate the mean-
several techniques, although in three dimensions a measquare end-to-end distance recursively on the anisotropic Be-
field exponentr=1/2 was found for intermediate values of the lattice. The problem is then reduced to finding the gen-
eral term of alinear mapping in six dimensions. In the
particular case of an isotropic lattice, we find a closed ex-
*On a leave from Departamento desin, Universidade Federal pression foR?). In Sec. Il the asymptotic behavior is stud-
de Santa Catarina. ied for a general case, based on the mapping. In Sec. IV final
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dynamic limit Ng—cc. Finally, the anisotropy is introduced

- into the model considering thlbndsof the chain ins of the

~ g/2 directions(we will call them speciaglat each lattice site

contribute with a factoy to the partition function, while no

additional contribution comes from bonds in the remaining
t=q/2—s directions at each lattice site.

4 / Usually [7], the calculation of thermodynamic properties
of models defined on the Bethe lattice is done in a recursive
manner, so we will follow a similar procedure in the calcu-
lation of the mean-square end-to-end distance. We define a

L~ generalized partition(or generating function for N-step
chains,

7

2
FIG. 1. A four-coordinated Cayley tree with a two step polymer IN= 2 zMyNep®, (©)
placed on it. The tree hag,= 2 generations, and is embedded on a
cubic lattice. For the polymer showR?=2. where the sum is over all configurations of the chais, the
] ) ) ) statistical weight of an elementary bend in the chyiis, the
comments and discussions may be found. Finally, in the apstatistical weight of bonds in special directions, anis a
pendixes we present a combinatorial calculation(Rf) i parameter associated with the square of the end-to-end dis-

the isotropic case. tance of the chain. At the end of the calculation, we will take
p=1. The numbers of elementary bends, bonds in special
Il. DEFINITION OF THE MODEL AND SOLUTION FOR directions, and the square end-to-end distance of each chain
THE ISOTROPIC LATTICE arem, N, andR?, respectively. The mean-square end-to-

. L end distance may then be calculated through
We consider a Cayley tree of coordination numgeand Y 9

place a chain on the tree starting at the central site. Each 1
bond of the tree is supposed to be of unit length. Figure 1 (R%)y=—
shows a tree withg=4, and a polymer witiN=2 steps In
placed on it. Since we want the Cayley tree to be an approxi-
mation of a hypercubic lattice id dimensions, we will re-

strict ourselvc_es to even coord|nat[on_numb<-}|%2d. 'A.‘S N " such that the first ones include &ltbond chains whose last
the hypercubic lattice, the bonds incident on any site of thq bonds are collinear and in one of the special directions

tree are ind directions, orthogonal to each other. As may be(there is necessarily a bend before theonds, if |<N)

seen in Fig. 1, the central site of the tree is connecteq to =~ . . I
other sites, which belong to the first generation of sites. EacWh'!e the Iast! bonds of the chams_con;rlbufung td\‘ are
collinear and in one of the nonspecial directions. The parti-

of the sites of the first generation is connectedjtol sites . .

of the second generation, and this process continues until thtg)n function may then be written as

surface of the tree is reached, after a number of steps equal to N

the number of generations in the tree. Upon reaching a site of gn= 2 (al+bh). (5)
theith generation coming from a site belonging to generation =1

i—1, there areq—1 possibilities for the next step of the

walk toward a site of generatign- 1. One of them will be in  Due to the fact that there are no closed loops on the Cayley
the same direction as the previous step, while the remainin§€€; it is quite easy to write down recursion relations for the
g— 2 will be in directions orthogonal tall previous steps. In Partial partition functions:

the second case, a statistical weigh$ associated with the N N

elementary bend in the walk. Therefore, we admit that the 1 _ | _ I

g—2 bonds which are orthogonal to the last step are also aN“_ZSyZR; by+2(s 1)yzp|§1 N €3
orthogonal toall bonds of the lattice in earlier generations.

79
pﬁp

lp=1- (4

The partition function may then be calculated in a recur-
sive way if we define partial partition functiors, and by,

Let us stress two consequences of this suppositior tree a'N++1l:yp2' +1a'N , (6h)
of coordination numbeq with Ny generations will be em-
bedded in a space of dimension N N
bl ., =2tzp>, a\+2(t—1)zp>, b}, (60)
D=aq/2+(Nyg—1)(q/2—1). 2 =1 =1
The sites of the Cayley tree will all be sites of a hypercubical b, =p? bk, (60)

lattice in D dimensions. This may be seen in Fig. 1, where o N

the sites of a tree witlj=4 andN,=2 are sites of a cubic With the initial conditions

(D=23) lattice.(ii) By construction, there will never be loops 1

in the tree, a property which is true for any Cayley tree. It is a;=2syp, (78)
well known[7] that it may be shown by other means that the 1

Cayley tree is an infinite-dimensional lattice in the thermo- by=2tp. (7b)
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For example, in the first expression above, the new bond
may be preceded by a bond in a special direction, wigh 2
possibilities, or by a bond in a nonspecial direction, with

2(s—1) possibilities. In both cases a factpris present,

since the bond added is in a direction perpendicular to all
previous ones, and thiR? is increased by one unit. Finally,
the inclusion of the new bond introduces one bend in the
chain, thus explaining the factar and since the bond is in a
special direction the factoy is justified. In the second ex-

pression, it should be mentioned tH&t is increased by|(
+1)%2—12, thus explaining the exponent @f If we now
define

M =z

ay=>, a\., (8a)
=1
N
b= 2, by, (8b)
=1
the mean-square end-to-end distance will be
d cyt+dy
2 —_— E— =
(R >N_—aN+bN pap(aN"‘bN) ant by’ 9

p=1

The recursion relations faay and by, as well as the ones

for the new variablesy anddy, may be written, fop=1,
as

N
aN+1=2z|:EOy'“[(s—l)aN_|+sbN_.], (108
N
bN+1=2z|§0 [tay-+sby_ ], (10b)

N
cN+1=22|ZO y  (s—1)(1+1)%ay
+s(1+1)%by_;+(s—1)cy_ +sdy_,], (100

N
dN+1=22|ZO [t(1+1)2ay_+(t—1)(1+1)%by_,

+tCN_|+(t_1)dN_|], (10d)
with the initial conditions

2s (113

a = 1

0 2(q-2)
b= 2t (11b

% 2(q-2)’
CO:dO:O. (11C)

An undesirable feature of the recursion relatipggs. (10)]

is that the new values of the iterating variables depend on all
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an+1=yant2zy(s—1)ay+shby], (123
bN+l:bN+ ZZ[taN+(t_1)bN], (12b)

Cnr1=YCnT22Y (s—1)(ay+Cy)

+s(by+dy) ]+ (2N+1)yay—2yey, (129

dy+1=dn+ 27 t(ay+cy) +(t—1)(by+dy)]
+(2N+1)by—2fy, (12d
en+1=yent2Nzy (s—1)ay+shy], (12¢
fnr1=fnt2NZtay+ (t—1)by], (12f)

with the initial conditions

a;=c;=2sy, (139
b,=d,=2t, (13b
e,=f;=0. (139

The value for(R?) may be found by iterating the mapping
above through Eq(9). In principle, since the mapping is
linear, it is solvable. One starts finding the general term of
the first two equations, then solving the last two equations,
and finally solving the two remaining relations. A software
for algebraic computing is helpful, but we realized that the
general answer will be too large to be handled, and also the
computer time and memory required are beyond the re-
sources we have available. We therefore restrict ourselves to
a complete solution of the isotropic cage=1, and to an
exact study of the asymptotic properties of the solution for
the general case. It is worthwhile to observe in the mapping
equationg12) that under transformations

s’ =t, (143
t'=s, (14b)
y'=1ly, (149

(R?) will be invariant, as expected.
For the isotropic casey= 1) mapping equation€l2) are
reduced to three variables

ay=ay+by, (153
Bn=cntdy, (15b)
yw=entfn, (150
and may be written as
an+1=[1+2(q—2)]ay, (163

Bn+1=[1+2(q—2)1Bn+[2N+1+2(q—2) Jan—2N,
(16b)

previous values. This dependence, however, is rather simple,

and it is possible, introducing two more variab&ggandfy,

Yn+1= INTNZ(q—2) ay. (160

to rewrite the recursion relations as a mapping involving

only one previous value of each variable, valid /¥ 1:

The initial conditions are
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a;=B1=q, (17 It should be stressed that the square end-to-end distance
given in Eq.(20) is the same as that obtained by adapting the
y,=0. (18  general result of Flory for random walks without immediate

return[1] to hypercubic lattices. In general, it may be shown

It is easy to find general solutions for this mapping: that an exact solution of statistical models with first neighbor

_ q
(k—1)?

Bn

_a
N k—1

[N(k*—1)kN"1+2—-2KkN],  (19b

-1 interactions on the Bethe lattice is equivalent to the Bethe
an=qk™" %, (193 approximation on the Bravais lattice with the same coordi-
nation numbef7]. The random walk without immediate re-
turns corresponds to the Bethe approximation of nhe0
model associated with the self-avoiding walk problghi],
and here we show that the analogy may be extended to the
mean-square end-to-end distance if we define distances on
N(k?—1)kN~"1+1—KkN], (190 the Bethe lattice as was done above. Although the results on

the Bethe lattice as calculated here, and the ones for ideal

chains without immediate return on a hypercubic lattice with
the same coordination number, should have the same
asymptotic behaviors, it is at first surprising that they are

where k=1+(q—2)z. The substitution of these solutions
into Eqg. (9) results in

5 actually identical. However, it turns out that the mean value

) [1+a] '

(R?)= Na—1+ —N, (200  of the angle between successive bonds, as calculated by
a? [1+a]N Flory in his original work[1], is actuallyexactfor chains on

the Bethe lattice as we considered.
wherea=k—1=(q—2)z.
The properties of the mean square end-to-end distance, ,<v\ibToTIC BEHAVIOR IN THE GENERAL CASE
[Eq. (20)] in some limiting cases show that our result has the
expected behavior. First, we notice that when the bend sta- In this section we develop a study of the asymptotic so-

tistical weightz vanishes, we have lution of the mapping Eqg12) for N> 1. Let us reduce the
) dimension of the mapping by one defining new iteration vari-
lim(R?)=N? (2)  aples
z—0
for any number of step. This rodlike behavior is expected, BN:%. (263
since no bend will be present in the walk. In the opposite an
limit of infinite bending statistical weight, the result is
. _Cn
lenl(R2>= N, (22) CN—a—N, (26b
which is also an expected result, since in this limit there is a D _d_N (260
bend at every internal site of the chain, so that, according to N"ay’
the definition of the end-to-end distance we are using, the
vector R in this situation will haveN components, all of e
them being equal to 1. EN:a_N’ (260
In the limit of an infinite chainlN— o, for nonzeroz, we
obtain f
Fy=—. (260
. ) (2+a)N N ay
I|m(R>=T, (23

N— o0

From Eqgs(12) and the initial condition§Eqs.(13)] it is easy

to write the recursion relations and initial conditions for the
new iterative variables in the mapping above. In the limit of
large values oN, for fixed z andy, the following asymptotic
behaviors are observed:

and we note that the expected scaling beha{is) ~ N2 is
obtained with the mean-field exponent=1/2. The
asymptotic behavior ofR?) is different for zero and nonzero
a, as may be appreciated comparing E@{) and(23), re-
spectively. So we may look for the crossover between both By~B°, (273
behaviors in the limit of Eq(1), obtaining the result

0 1
lim  (R%=N2F(x), (24) Cy~C°+C'N, (279
N—o;a—0;aN=x
Dy~DP+D1N, (270
with a scaling function
En~E°+EIN, (270

2[x—1+exp —x)] (25

F(x)=
0 x? Fn~FO+FIN. (278
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[A1AARARRRRNSRAat, R
ALALARARARRSRARSSRR
INAARARRARARRNRE
B AN
RN N FIG. 2. The amplitude ofR?) as a function
of z andy for a lattice withs=1 andt=2 (q
=6). As expected, the amplitude divergeszs
—0. Sinces=1, a divergence is also observed as

y—>o<:_
The substitution of the these expressions into the recursion dy=2tN?, (340
relations for the variables defined in E¢26), obtained from
the general mapping Eq§l2), leads to a determination of en="Fy=0, (348

the constants in the asymptotic behavior, thus we obtain
and we have(R?)=N?, as expected. From the mapping

_CntDy c'+D? equations(12), the recursion relations for the derivatives of

2 —
(R%)= 1+ By 1+B° N=CN, (28 the variables with respect to(at z=0) may be seen to be
where the amplitud€=C! is given by ans 1 =yagt4ays(s— yN+t], (353
sy YT eHL) f2te bi+ 1= by +at(sy+t-1), (35b)
o y(l+e)—1 € 29
= Sy(BO)2+ 1t @) =ye Ay s+ N [(s— D)yN ]+ y(2N+ 1)aj,
where —2yey, (350
e=2z(s—1+sB°), (30) dis1=dy+4t(L+N2)(syN+t—1)+ (2N+1)bj— 21,
(350
andB" is the positive root of
enti=yey+ 4Ny (s—1)yN+t], 35
275)(B%)?+[y—1+2z(sy—t—y+1)]B°—2zt=0. ne1= Yot ANYS(s= Dyt (359
3D fle=fu+aNt(syN+t—1), (35f)

The amplitude of the asymptotic behavior(&?) thus may .

be obtained exactly in the general case and, as may be sewiere the values for the variablggs. (34)] have already

in Fig. 2, diverges ag—0, as expected. Also, in the limit been substituted and the initial conditions are=b;=- -

y—o the problem reduces to a walk on an isotropic lattice=f1=0. The general solution of the recursion relatifBgs.

with coordination number equal tos2and we obtain (35] is not difficult to obtain with the aid of an algebra
software. Considering the invariance described in E44),

_2z(s—1)+2 32 we will restrict our discussion to the cage- 1, without loss
© 2z(s—-1) (32 of generality. For large values ®f, the dominant terms of
the solution of the mapping are
which agrees with Eq19) for the isotropic case.
Now we will study the asymptotic behavior in the qua- ayn+by~2syN, (363
sirigid limits N—o, z—0, andN(q—2)z=x. We thus ex-
pand(R?) for small values ofz eyt dy~2syNN?, (36b)
d(R?) C1yWNN
(RE)(zy.N)~(RAH(Oy.N)+—=—=| z. (33 as(s=Ly™N i s>1
z=0 aj+b~1 8tyM P (360
For z=0 the solutions of the mapping equatioii®) are y-1 ,
=2sy", 34 8 .
ay=2sy" (343 §s(s— 1yNN3 if s>1
by=2t, (34b cytdiy~ (36d

8tyNN2

if s=1.
cy=2sy"N?, (340 y—1
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The leading term in the derivative of the mean-square endeourse convenient for the calculations, and may be seen as a
to-end distance will be particular case. A closer consideration of this point, however,
leads to the conclusion that our results are exact for any
chains such that the assertion that at any bend the new direc-
tion is perpendicular tcall previous directions of bonds
holds. Thus it is clear that if the whole chain is contained in
Therefore, up to first order iR, the scaling functior(x) in one of theq rooted subtrees attached to the central site, the
the quasirigid limit is found to b&(x)~1—F,(s,t)x. Con-  results are still the same. If portions of the chain are located

sidering the symmetry equatidi4) and the solution for the 0N two of these subtrees the calculation becomes more com-

(R?) 2
— Z:0~—§(s—1)N3. (37

isotropic caséEq. (20)], we have plicated since, as may be seen in Fig. 1, there are bonds in
the same direction in different subtrees. However, this prob-
(2(t—1) . lem may be easily avoided by enlarging the dimension of the
3(q—2) it y<1 Euclidean space in which the tree is embedded, thus assuring
that any two bonds in the same direction are necessarily con-
Fu(sit)={ E if y=1 (39) nected by a walk without any bend. For such a tree, our
' 3 results hold for any chain, regardless of the location of its
2(s—1) endpoints.
— if y>1. In the general anisotropic case, we restricted ourselves to
\ 3(a=2) the discussion of the asymptotic behavio Bf), which was

We thus conclude that the scaling function in general dls_s_tu_d|ed in the semlerX|pIe case a_nd also in the qu_asmgld
. X o limit. The expected scaling behavior was obtained in both

plays a discontinuous derivative yat=1. ) . . S L
cases, and a interesting discontinuity in the quasirigid limit

amplitude is observed as the isotropic vajuel is crossed.
IV. CONCLUSION

We formulated the problem of the calculation of the ACKNOWLEDGMENTS
mean-square end-to-end distance of semiflexible polymers
placed on aj-coordinated anisotropic Bethe lattice as a lin- We acknowledge partial financial support from the Bra-
ear mapping, whose general term may in principle be obzilian agencies CNPq and FINEP.
tained. In the isotropic case, the mapping may easily be
solved, and leads to an expression(far) which isidentical APPENDIX A: COMBINATORIAL SOLUTION IN THE
to the one obtained for random walks without immediate ISOTROPIC CASE
return on a hypercubic lattice with the same coordination
number[1]. The identity between the two problems regard- Any N-step walk on the Cayley tree will visit a subset of
ing thermodynamic properties derived from the free energysites of theD-dimensional hypercubic lattice defining a sub-
is well known [11], and here is extended for a thermody- space whose dimensionality is between 1 Bin@he limiting
namic average of a geometric property. One point whiclcases are the ones of a polymer without any béodi),
should be stressed is that the definition of the Euclidean diswhich is one dimensional, and a polymer where we have a
tance between two points on the Bethe lattice is rather arbibend at every internal site, and since at each bend the new
trary. Here we defined the distance by embedding the Caylelond is in a direction orthogonal to all precedent bonds of
tree in a hypercubic lattice of sufficiently high dimensional-the polymer, the polymer is embedded in ldrdimensional
ity. In the thermodynamic limit the dimensionality of this subspace. Since the initial site of the chain is supposed to be
lattice diverges, as expectgd]. Other definitions of distance at the central site of the tree, the end-to-end distance will be
may be proposefB]. The simple one we adopted here leadsgiven by the modulus of the position vector of the final site,
to meaningful conclusions. Since calculations on the Bethgenoted byR. For a polymer withm bends, the number of
lattice are usually done recursively, and one step in the recomponents of this vector will be equal to+1. For sim-
cursion relations corresponds to adding another generation {gicity, we will admit that each bond is of unit length, so that

the tree, it is tempting to define the distance between tw 3 ;
sites on the tree as the difference between the numbers of tﬁrée components aR will be integers. We want to compute

generations they belong to. This definition, although simpld€ Mmean value oR over all polymers withN steps,
and operational, has serious drawbacks. This is quite clear

for the particular problem we looked at here, since it implies S R?
that(R?) for any Nstep chain is equal tN?. We would thus < z
havev=1, the one-dimensional value, and the identity be- (R)= " (A1)

tween the results for the Bethe lattice and for walks without
immediate return on hypercubic lattices would break down.
This definition of distance was used recently in the exact
calculation of correlation functions for a general simag- ) _ _
netic mode|[1o], |eading tov=1, in Opposition to the gen- wherem is the numbe{ of bends in the walk and the sum is
erally accepted mean-field value=1/2 [12]. over all conﬁgurationf{w1 of polymers withN steps. Besides
The fact that all walks we considered here have their inithe first and last components the values of the otherl
tial sites located at the central site of the Cayley tree is otomponents oR are the numbers of steps between succes-

Zm

M
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sive bends in the walk. We should remember that there arBerforming the sum in the denominator of E&2) taking

g— 2 possibilities for each bend. So we may rewrite &)
as

N—1
>
m=0
N—-T
E a"An m

m=0

a"By.m

(R?)= (A2)

wherea=(q—2)z embodies all dependence on coordination

number and statistical weight as long@s 4,

Anm=> 1, (A3)
R
and
m+1
Bum=> 2 R’ (A4)
'iwq i=0

Note that the effect of the bending energy can be described

by introducing an effective coordination numbgr=a+ 2
for an associated totally flexible polymer. The sum#\jp,,

andBy , are over all possible values f& with m+1 com-

ponents and subjected to the constraint of the total number of

steps being equal tN; that is,

m+1

> R=N.
i=1

(A5)

The sum in Eq(A3) is just the number of vector® with
m+1 components which obey constrai(h5). Since the
minimum value of each component Bfis equal to 1, it is
convenient to defing;=R;—1 and thereforeAy , is the

number of ways to put th—m—1 remaining steps into the

m+1 components oR:

(N—1)!

ANm= i N—m= D)1 (A6)
The sumBy ,, may then be rewritten as
m+1
(A7)

Bum=2 2, (1412
rm =1

where each componenf assumes values between 0 ad
—m—1 subject to the constraint of EGA5):

m+1

Zl r=N-m-1. (A8)

The calculation ofBy , is given in Appendix B, and the

result is

(m+1)(2N—m)N!
(mM+2)I(N=m—-1)!"

N,m— (A9)

Eqg. (A6) into account, we have

-1
R%)=———| 2(N )
(R [1+a]N" 1 m= m
am N—1 N—1
— m
mrz2 2| m a (A10)
The first sum may be calculated by noting that
A N-1 /N—1 m
N-14y_ A2
fo x(1+x)N " tdx=A m20< o s A1
and, therefore
L (N=1) a™ [1+a]NaN—-1]+1
Z = (A12)
m= m+2 N(N+1)a?

Substituting this result into EqA10) and performing the
second sum, we finally obtain the expression

a]

( 2)— SN (A13)

+a]

APPENDIX B: DERIVATION OF By

In this appendix we want to derive EGA9) for By p,.
Using Eq.(A8) and defining for convenienc®=N—-m—1,
Eq. (A7) is rewritten as

il (A+m-—j)! 12

Redefining the summation variable wite= N+1—]j, this
equation turns out to be
N
(i+m—1)!
VAN
Bnm= (m+1)2 (N+1-1i) =1 (B2)
Using the equality
N .
(m+i)l  (m+N+1)!
Zﬁ mlil  (m+1)IN!'’ (B3)
after some manipulation we obtain
(N+1+m)!
BNYm:(m‘Fl) (N‘Fl)W_Z(N‘Fl)
m(N+1+m)! /g: (|+m 1)t
MMl & G-I (m-1D)!
(B4)
The last summation to be dealt with is just
N+1 . .
(i+m=21)i
21 (=D (m=1)!" (B9
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Defining j=i—1, it follows that Substitution into Eq(B4) leads to
XGAmi(j+1)  mN+mE1)! (m+1)(N+m+1)![2AV+m+2]

_ _ By.m= . (B

o jl(m-1)! M(m+1)! ’ (m+2)!IM

(N+m+1)! Substituting\/=N—m-—1, we obtain

1) —mr .
FmmE D =D 2) (m+1)(2N—m)N!

(B6) N Mt 2) (N—m—1)! (B8)
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