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Semiflexible polymer on an anisotropic Bethe lattice

J. F. Stilck,* C. E. Cordeiro, and R. L. P. G. do Amaral
Instituto de Fı´sica, Universidade Federal Fluminense, Avenida Litoraˆnea s/n 24210-340 Nitero´i, Rio de Janeiro, Brazil

~Received 13 July 1999!

The mean-square end-to-end distance of anN-step polymer on a Bethe lattice is calculated. We consider
semiflexible polymers placed on isotropic and anisotropic lattices. The distance on the Cayley tree is defined
by embedding the tree on a sufficiently high-dimensional Euclidean space, considering that every bend of the
polymer defines a direction orthogonal to all the previous ones. In the isotropic case, the result obtained for the
mean-square end-to-end distance turns out to be identical to the one obtained forideal chains without imme-
diate returns on an hypercubic lattice with the same coordination number of the Bethe lattice. For the general
case, we obtain asymptotic behavior in both the semiflexible and almost rigid limits.

PACS number~s!: 61.41.1e, 05.50.1q
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I. INTRODUCTION

Chain polymers are often approximated as self-avoid
and mutually avoiding walks~SAW’s! on a lattice, and much
information about the behavior of polymers both in a melt
in solution has been understood theoretically through
model @1,2#. One of the characterizations of the conform
tions of a walk is through its mean-square end-to-end
tance^R2&, where the mean is taken over all configuratio
of theN-step walk on the lattice. In the limitN→` a scaling
behavior^R2&;N2n is observed, where the exponentn ex-
hibits a universal behavior, with a mean-field valuen51/2
for random walks, which correspond to ideal chains, ann
53/4 for SAW’s on two-dimensional lattices@3#, for ex-
ample.

An interesting question arises of whether the chains
not considered to be totally flexible, an energy being ass
ated with bends of the chain. This is often observed for r
polymers. Let us, for simplicity, restrict ourselves to SAW
on hypercubic lattices. In this case, consecutive steps of
walk are either in the same direction or a perpendicular
rection. So a Boltzmann factorz may be associated with eac
pair of perpendicular consecutive steps of walk. This pr
lem of semiflexible polymers~also called persistent or biase
walks! has been studied for some time@4–6#, and there oc-
curs a crossover in the behavior of the walk between a r
like behaviorn r51 for z50, where the polymer is totally
stiff, and the usual behavior with a different exponentn for
nonzero values ofz. Stating this point more precisely, th
mean-square end-to-end distance displays a scaling beh
in the limit N→`,z→0,Ncz5const., which is given by

^R2&;N2nrF~zNc!, ~1!

the observed values beingn r51 andc51.
The scaling function has a behaviorF(x);x(2n22)/c in

the limit x→`. This scaling form has been verified throug
several techniques, although in three dimensions a m
field exponentn51/2 was found for intermediate values

*On a leave from Departamento de Fı´sica, Universidade Federa
de Santa Catarina.
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the number of stepsN, the crossover to the three-dimension
value occurring at rather high values ofN @5#.

In this paper, we consider the problem of a semiflexib
polymer on a Bethe lattice@7#, exactly calculating the mean
square end-to-end distance of walks on the Cayley
which start at the central site and haveN steps, supposing
that the walks will never reach the surface of the Cayley tr
thus remaining in its core. We also calculate the mean-squ
end-to-end distance in the case when the lattice is consid
anisotropic, that is, when the edges of the lattice are
equivalent with respect to their occupation by a polym
bond. The definition of the distance between two sites of
Cayley tree is not obvious, and some possibilities explor
the fact that the tree may be embedded in a hypersurface
non-Euclidean space have been given@8#. In this paper, how-
ever, we used a simpler definition, considering the Cay
tree in the thermodynamic limit to be embedded in
infinite-dimensional Euclidean space. The result
^R2&(N,z) for the isotropic case has the scaling form of E
~1!. Not surprisingly the scaling functionF(x) is equal to the
one obtained for random walks with no immediate return
a hypercubic lattice, with the same coordination number
the Bethe lattice considered. This might be expected, s
Bethe lattice calculations lead to mean-field critical exp
nents. Also, in the limitN→` for nonzero values ofz, the
scaling behavior̂ R2&;N2n with the classical valuen51/2
is verified in the expression for^R2&(N,z). It should be men-
tioned that our proposal of defining the Euclidean distan
between two points of the Cayley tree is similar to earl
results in the literature relating this distance to the chem
distance, measured along the chain@9#. However, the distinc-
tion between the chemical and Euclidean distances is
always properly considered in the literature, and this m
lead to contradicting results@10#, as we will discuss in more
detail in Sec. IV.

In Sec. II we define the model and calculate the me
square end-to-end distance recursively on the anisotropic
the lattice. The problem is then reduced to finding the g
eral term of a linear mapping in six dimensions. In the
particular case of an isotropic lattice, we find a closed
pression for̂ R2&. In Sec. III the asymptotic behavior is stud
ied for a general case, based on the mapping. In Sec. IV fi
5520 ©2000 The American Physical Society
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PRE 61 5521SEMIFLEXIBLE POLYMER ON AN ANISOTROPIC . . .
comments and discussions may be found. Finally, in the
pendixes we present a combinatorial calculation for^R2& in
the isotropic case.

II. DEFINITION OF THE MODEL AND SOLUTION FOR
THE ISOTROPIC LATTICE

We consider a Cayley tree of coordination numberq, and
place a chain on the tree starting at the central site. E
bond of the tree is supposed to be of unit length. Figur
shows a tree withq54, and a polymer withN52 steps
placed on it. Since we want the Cayley tree to be an appr
mation of a hypercubic lattice ind dimensions, we will re-
strict ourselves to even coordination numbersq52d. As in
the hypercubic lattice, the bonds incident on any site of
tree are ind directions, orthogonal to each other. As may
seen in Fig. 1, the central site of the tree is connectedq
other sites, which belong to the first generation of sites. E
of the sites of the first generation is connected toq21 sites
of the second generation, and this process continues unti
surface of the tree is reached, after a number of steps equ
the number of generations in the tree. Upon reaching a sit
the i th generation coming from a site belonging to generat
i 21, there areq21 possibilities for the next step of th
walk toward a site of generationi 11. One of them will be in
the same direction as the previous step, while the remain
q22 will be in directions orthogonal toall previous steps. In
the second case, a statistical weightz is associated with the
elementary bend in the walk. Therefore, we admit that
q22 bonds which are orthogonal to the last step are a
orthogonal toall bonds of the lattice in earlier generation
Let us stress two consequences of this supposition:~i! A tree
of coordination numberq with Ng generations will be em-
bedded in a space of dimension

D5q/21~Ng21!~q/221!. ~2!

The sites of the Cayley tree will all be sites of a hypercubi
lattice in D dimensions. This may be seen in Fig. 1, whe
the sites of a tree withq54 andNg52 are sites of a cubic
(D53) lattice.~ii ! By construction, there will never be loop
in the tree, a property which is true for any Cayley tree. It
well known @7# that it may be shown by other means that t
Cayley tree is an infinite-dimensional lattice in the therm

FIG. 1. A four-coordinated Cayley tree with a two step polym
placed on it. The tree hasNg52 generations, and is embedded on
cubic lattice. For the polymer shown,R252.
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dynamic limit Ng→`. Finally, the anisotropy is introduce
into the model considering thatbondsof the chain ins of the
q/2 directions~we will call them special! at each lattice site
contribute with a factory to the partition function, while no
additional contribution comes from bonds in the remaini
t5q/22s directions at each lattice site.

Usually @7#, the calculation of thermodynamic propertie
of models defined on the Bethe lattice is done in a recurs
manner, so we will follow a similar procedure in the calc
lation of the mean-square end-to-end distance. We defin
generalized partition~or generating! function for N-step
chains,

gN5( zmyNepR2
, ~3!

where the sum is over all configurations of the chain,z is the
statistical weight of an elementary bend in the chain,y is the
statistical weight of bonds in special directions, andp is a
parameter associated with the square of the end-to-end
tance of the chain. At the end of the calculation, we will ta
p51. The numbers of elementary bends, bonds in spe
directions, and the square end-to-end distance of each c
are m, Ne , and R2, respectively. The mean-square end-
end distance may then be calculated through

^R2&N5
1

gN
S p

]gN

]p D up51 . ~4!

The partition function may then be calculated in a rec
sive way if we define partial partition functionsaN

l and bN
l

such that the first ones include allN-bond chains whose las
l bonds are collinear and in one of the special directio
~there is necessarily a bend before thel bonds, if l ,N),
while the lastl bonds of the chains contributing tobN

l are
collinear and in one of the nonspecial directions. The pa
tion function may then be written as

gN5(
l 51

N

~aN
l 1bN

l !. ~5!

Due to the fact that there are no closed loops on the Ca
tree, it is quite easy to write down recursion relations for t
partial partition functions:

aN11
1 52syzp(

l 51

N

bN
l 12~s21!yzp(

l 51

N

aN
l , ~6a!

aN11
l 11 5yp2l 11aN

l , ~6b!

bN11
1 52tzp(

l 51

N

aN
l 12~ t21!zp(

l 51

N

bN
l , ~6c!

bN11
l 5p2l 11bN

l , ~6d!

with the initial conditions

a1
152syp, ~7a!

b1
152tp. ~7b!

r



on
2

ith

a
,
th
a
-

a
p

ing

g
s
of
ns,
re
he
the
re-
s to

for
ing

5522 PRE 61J. F. STILCK, C. E. CORDEIRO, AND R. L. P. G. do AMARAL
For example, in the first expression above, the new b
may be preceded by a bond in a special direction, withs
possibilities, or by a bond in a nonspecial direction, w
2(s21) possibilities. In both cases a factorp is present,
since the bond added is in a direction perpendicular to
previous ones, and thusR2 is increased by one unit. Finally
the inclusion of the new bond introduces one bend in
chain, thus explaining the factorz, and since the bond is in
special direction the factory is justified. In the second ex
pression, it should be mentioned thatR2 is increased by (l
11)22 l 2, thus explaining the exponent ofp. If we now
define

aN5(
l 51

N

aN
l , ~8a!

bN5(
l 51

N

bN
l , ~8b!

the mean-square end-to-end distance will be

^R2&N5
1

aN1bN
Fp

]

]p
~aN1bN!GU

p51

5
cN1dN

aN1bN
. ~9!

The recursion relations foraN and bN , as well as the ones
for the new variablescN anddN , may be written, forp51,
as

aN1152z(
l 50

N

yl 11@~s21!aN2 l1sbN2 l #, ~10a!

bN1152z(
l 50

N

@ taN2 l1sbN2 l #, ~10b!

cN1152z(
l 50

N

yl 11@~s21!~ l 11!2aN2 l

1s~ l 11!2bN2 l1~s21!cN2 l1sdN2 l #, ~10c!

dN1152z(
l 50

N

@ t~ l 11!2aN2 l1~ t21!~ l 11!2bN2 l

1tcN2 l1~ t21!dN2 l #, ~10d!

with the initial conditions

a05
2s

z~q22!
, ~11a!

b05
2t

z~q22!
, ~11b!

c05d050. ~11c!

An undesirable feature of the recursion relations@Eqs.~10!#
is that the new values of the iterating variables depend on
previous values. This dependence, however, is rather sim
and it is possible, introducing two more variableseN and f N ,
to rewrite the recursion relations as a mapping involv
only one previous value of each variable, valid forN>1:
d

ll

e

ll
le,

aN115yaN12zy@~s21!aN1sbN#, ~12a!

bN115bN12z@ taN1~ t21!bN#, ~12b!

cN115ycN12zy@~s21!~aN1cN!

1s~bN1dN!#1~2N11!yaN22yeN , ~12c!

dN115dN12z@ t~aN1cN!1~ t21!~bN1dN!#

1~2N11!bN22 f N , ~12d!

eN115yeN12Nzy@~s21!aN1sbN#, ~12e!

f N115 f N12Nz@ taN1~ t21!bN#, ~12f!

with the initial conditions

a15c152sy, ~13a!

b15d152t, ~13b!

e15 f 150. ~13c!

The value for^R2& may be found by iterating the mappin
above through Eq.~9!. In principle, since the mapping i
linear, it is solvable. One starts finding the general term
the first two equations, then solving the last two equatio
and finally solving the two remaining relations. A softwa
for algebraic computing is helpful, but we realized that t
general answer will be too large to be handled, and also
computer time and memory required are beyond the
sources we have available. We therefore restrict ourselve
a complete solution of the isotropic casey51, and to an
exact study of the asymptotic properties of the solution
the general case. It is worthwhile to observe in the mapp
equations~12! that under transformations

s85t, ~14a!

t85s, ~14b!

y851/y, ~14c!

^R2& will be invariant, as expected.
For the isotropic case (y51) mapping equations~12! are

reduced to three variables

aN5aN1bN , ~15a!

bN5cN1dN , ~15b!

gN5eN1 f N , ~15c!

and may be written as

aN115@11z~q22!#aN , ~16a!

bN115@11z~q22!#bN1@2N111z~q22!#aN22gN ,
~16b!

gN115gN1Nz~q22!aN . ~16c!

The initial conditions are
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a15b15q, ~17!

g150. ~18!

It is easy to find general solutions for this mapping:

aN5qkN21, ~19a!

bN5
q

~k21!2
@N~k221!kN211222kN#, ~19b!

gN5
q

k21
@N~k221!kN21112kN#, ~19c!

where k511(q22)z. The substitution of these solution
into Eq. ~9! results in

^R2&5
2@11a#

a2 FNa211
1

@11a#NG2N, ~20!

wherea5k215(q22)z.
The properties of the mean square end-to-end dista

@Eq. ~20!# in some limiting cases show that our result has
expected behavior. First, we notice that when the bend
tistical weightz vanishes, we have

lim
z→0

^R2&5N2 ~21!

for any number of stepsN. This rodlike behavior is expected
since no bend will be present in the walk. In the oppos
limit of infinite bending statistical weight, the result is

lim
z→`

^R2&5N, ~22!

which is also an expected result, since in this limit there i
bend at every internal site of the chain, so that, accordin
the definition of the end-to-end distance we are using,
vector RW in this situation will haveN components, all of
them being equal to 1.

In the limit of an infinite chainN→`, for nonzeroz, we
obtain

lim
N→`

^R2&5
~21a!N

a
, ~23!

and we note that the expected scaling behavior^R2&;N2n is
obtained with the mean-field exponentn51/2. The
asymptotic behavior of̂R2& is different for zero and nonzer
a, as may be appreciated comparing Eqs.~21! and ~23!, re-
spectively. So we may look for the crossover between b
behaviors in the limit of Eq.~1!, obtaining the result

lim
N→`;a→0;aN5x

^R2&5N2F~x!, ~24!

with a scaling function

F~x!5
2@x211exp~2x!#

x2
. ~25!
ce
e
a-

e

a
to
e

th

It should be stressed that the square end-to-end dist
given in Eq.~20! is the same as that obtained by adapting
general result of Flory for random walks without immedia
return@1# to hypercubic lattices. In general, it may be show
that an exact solution of statistical models with first neighb
interactions on the Bethe lattice is equivalent to the Be
approximation on the Bravais lattice with the same coor
nation number@7#. The random walk without immediate re
turns corresponds to the Bethe approximation of then→0
model associated with the self-avoiding walk problem@11#,
and here we show that the analogy may be extended to
mean-square end-to-end distance if we define distance
the Bethe lattice as was done above. Although the result
the Bethe lattice as calculated here, and the ones for i
chains without immediate return on a hypercubic lattice w
the same coordination number, should have the sa
asymptotic behaviors, it is at first surprising that they a
actually identical. However, it turns out that the mean va
of the angle between successive bonds, as calculated
Flory in his original work@1#, is actuallyexactfor chains on
the Bethe lattice as we considered.

III. ASYMPTOTIC BEHAVIOR IN THE GENERAL CASE

In this section we develop a study of the asymptotic
lution of the mapping Eqs.~12! for N@1. Let us reduce the
dimension of the mapping by one defining new iteration va
ables

BN5
bN

aN
, ~26a!

CN5
cN

aN
, ~26b!

DN5
dN

aN
, ~26c!

EN5
eN

aN
, ~26d!

FN5
f N

aN
. ~26e!

From Eqs.~12! and the initial conditions@Eqs.~13!# it is easy
to write the recursion relations and initial conditions for t
new iterative variables in the mapping above. In the limit
large values ofN, for fixed z andy, the following asymptotic
behaviors are observed:

BN;B0, ~27a!

CN;C01C1N, ~27b!

DN;D01D1N, ~27c!

EN;E01E1N, ~27d!

FN;F01F1N. ~27e!
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FIG. 2. The amplitude of̂R2& as a function
of z and y for a lattice with s51 and t52 (q
56). As expected, the amplitude diverges asz
→0. Sinces51, a divergence is also observed
y→`.
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The substitution of the these expressions into the recur
relations for the variables defined in Eqs.~26!, obtained from
the general mapping Eqs.~12!, leads to a determination o
the constants in the asymptotic behavior, thus we obtain

^R2&5
CN1DN

11BN
;

C11D1

11B0
N5CN, ~28!

where the amplitudeC5C1 is given by

C5

sy~B0!2Fy~11e!11

y~11e!21G1tF21e

e G
sy~B0!21t

, ~29!

where

e52z~s211sB0!, ~30!

andB0 is the positive root of

2zsy~B0!21@y2112z~sy2t2y11!#B022zt50.
~31!

The amplitude of the asymptotic behavior of^R2& thus may
be obtained exactly in the general case and, as may be
in Fig. 2, diverges asz→0, as expected. Also, in the limi
y→` the problem reduces to a walk on an isotropic latt
with coordination number equal to 2s, and we obtain

C5
2z~s21!12

2z~s21!
, ~32!

which agrees with Eq.~19! for the isotropic case.
Now we will study the asymptotic behavior in the qu

sirigid limits N→`, z→0, andN(q22)z5x. We thus ex-
pand^R2& for small values ofz:

^R2&~z,y,N!;^R2&~0,y,N!1
]^R2&

]z U
z50

z. ~33!

For z50 the solutions of the mapping equations~12! are

aN52syN, ~34a!

bN52t, ~34b!

cN52syNN2, ~34c!
n

en

dN52tN2, ~34d!

eN5 f N50, ~34e!

and we have^R2&5N2, as expected. From the mappin
equations~12!, the recursion relations for the derivatives
the variables with respect toz ~at z50) may be seen to be

aN118 5yaN8 14ys@~s21!yN1t#, ~35a!

bN118 5bN8 14t~syN1t21!, ~35b!

cN118 5ycN8 14ys~11N2!@~s21!yN1t#1y~2N11!aN8

22yeN8 , ~35c!

dN118 5dN8 14t~11N2!~syN1t21!1~2N11!bN8 22 f N8 ,
~35d!

eN118 5yeN8 14Nys@~s21!yN1t#, ~35e!

f N118 5 f N8 14Nt~syN1t21!, ~35f!

where the values for the variables@Eqs. ~34!# have already
been substituted and the initial conditions area185b185•••

5 f 1850. The general solution of the recursion relations@Eqs.
~35!# is not difficult to obtain with the aid of an algebr
software. Considering the invariance described in Eqs.~14!,
we will restrict our discussion to the casey.1, without loss
of generality. For large values ofN, the dominant terms of
the solution of the mapping are

aN1bN;2syN, ~36a!

cN1dN;2syNN2, ~36b!

aN8 1bN8 ;H 4s~s21!yNN if s.1

8tyN

y21
if s51,

~36c!

cN8 1dN8 ;H 8

3
s~s21!yNN3 if s.1

8tyNN2

y21
if s51.

~36d!



n

is

e
e

in-
ob
b

te
io
d
rg
y-
ic
di
rb
yl
al-
is

d
th
r
n

tw
f
pl
le
ie

e
ou

n
ac

-

in
o

as a
er,

any
irec-

in
the
ted
om-
s in
ob-
the
ring
on-

our
its

s to

igid
oth

it

a-

of
b-

e a
new
of

o be
l be
te,
f

at
e

is

es-

PRE 61 5525SEMIFLEXIBLE POLYMER ON AN ANISOTROPIC . . .
The leading term in the derivative of the mean-square e
to-end distance will be

]^R2&
]z U

z50

;2
2

3
~s21!N3. ~37!

Therefore, up to first order inx, the scaling functionF(x) in
the quasirigid limit is found to beF(x);12F1(s,t)x. Con-
sidering the symmetry equation~14! and the solution for the
isotropic case@Eq. ~20!#, we have

F1~s,t !55
2~ t21!

3~q22!
if y,1

1

3
if y51

2~s21!

3~q22!
if y.1.

~38!

We thus conclude that the scaling function in general d
plays a discontinuous derivative aty51.

IV. CONCLUSION

We formulated the problem of the calculation of th
mean-square end-to-end distance of semiflexible polym
placed on aq-coordinated anisotropic Bethe lattice as a l
ear mapping, whose general term may in principle be
tained. In the isotropic case, the mapping may easily
solved, and leads to an expression for^R2& which is identical
to the one obtained for random walks without immedia
return on a hypercubic lattice with the same coordinat
number@1#. The identity between the two problems regar
ing thermodynamic properties derived from the free ene
is well known @11#, and here is extended for a thermod
namic average of a geometric property. One point wh
should be stressed is that the definition of the Euclidean
tance between two points on the Bethe lattice is rather a
trary. Here we defined the distance by embedding the Ca
tree in a hypercubic lattice of sufficiently high dimension
ity. In the thermodynamic limit the dimensionality of th
lattice diverges, as expected@7#. Other definitions of distance
may be proposed@8#. The simple one we adopted here lea
to meaningful conclusions. Since calculations on the Be
lattice are usually done recursively, and one step in the
cursion relations corresponds to adding another generatio
the tree, it is tempting to define the distance between
sites on the tree as the difference between the numbers o
generations they belong to. This definition, although sim
and operational, has serious drawbacks. This is quite c
for the particular problem we looked at here, since it impl
that^R2& for any N-step chain is equal toN2. We would thus
haven51, the one-dimensional value, and the identity b
tween the results for the Bethe lattice and for walks with
immediate return on hypercubic lattices would break dow
This definition of distance was used recently in the ex
calculation of correlation functions for a general spin-S mag-
netic model@10#, leading ton51, in opposition to the gen
erally accepted mean-field valuen51/2 @12#.

The fact that all walks we considered here have their
tial sites located at the central site of the Cayley tree is
d-
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course convenient for the calculations, and may be seen
particular case. A closer consideration of this point, howev
leads to the conclusion that our results are exact for
chains such that the assertion that at any bend the new d
tion is perpendicular toall previous directions of bonds
holds. Thus it is clear that if the whole chain is contained
one of theq rooted subtrees attached to the central site,
results are still the same. If portions of the chain are loca
on two of these subtrees the calculation becomes more c
plicated since, as may be seen in Fig. 1, there are bond
the same direction in different subtrees. However, this pr
lem may be easily avoided by enlarging the dimension of
Euclidean space in which the tree is embedded, thus assu
that any two bonds in the same direction are necessarily c
nected by a walk without any bend. For such a tree,
results hold for any chain, regardless of the location of
endpoints.

In the general anisotropic case, we restricted ourselve
the discussion of the asymptotic behavior of^R2&, which was
studied in the semiflexible case and also in the quasir
limit. The expected scaling behavior was obtained in b
cases, and a interesting discontinuity in the quasirigid lim
amplitude is observed as the isotropic valuey51 is crossed.
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APPENDIX A: COMBINATORIAL SOLUTION IN THE
ISOTROPIC CASE

Any N-step walk on the Cayley tree will visit a subset
sites of theD-dimensional hypercubic lattice defining a su
space whose dimensionality is between 1 andN. The limiting
cases are the ones of a polymer without any bend~rod!,
which is one dimensional, and a polymer where we hav
bend at every internal site, and since at each bend the
bond is in a direction orthogonal to all precedent bonds
the polymer, the polymer is embedded in anN-dimensional
subspace. Since the initial site of the chain is supposed t
at the central site of the tree, the end-to-end distance wil
given by the modulus of the position vector of the final si
denoted byRW . For a polymer withm bends, the number o
components of this vector will be equal tom11. For sim-
plicity, we will admit that each bond is of unit length, so th
the components ofRW will be integers. We want to comput
the mean value ofRW over all polymers withN steps,

^R2&5

(
RW m

N
zmR2

(
RW m

N
zm

, ~A1!

wherem is the number of bends in the walk and the sum
over all configurationsRW m

N of polymers withN steps. Besides
the first and last components the values of the otherm21
components ofR are the numbers of steps between succ
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sive bends in the walk. We should remember that there
q22 possibilities for each bend. So we may rewrite Eq.~A1!
as

^R2&5

(
m50

N21

amBN,m

(
m50

N21

amAN,m

, ~A2!

wherea5(q22)z embodies all dependence on coordinati
number and statistical weight as long asq>4,

AN,m5(
RW m

N
1, ~A3!

and

BN,m5(
RW m

N
(
i 50

m11

Ri
2 . ~A4!

Note that the effect of the bending energy can be descr
by introducing an effective coordination numberq85a12
for an associated totally flexible polymer. The sums inAN,m

andBN,m are over all possible values forRW with m11 com-
ponents and subjected to the constraint of the total numbe
steps being equal toN; that is,

(
i 51

m11

Ri5N. ~A5!

The sum in Eq.~A3! is just the number of vectorsRW with
m11 components which obey constraint~A5!. Since the
minimum value of each component ofRW is equal to 1, it is
convenient to definer i5Ri21 and thereforeAN,m is the
number of ways to put theN2m21 remaining steps into the
m11 components ofRW :

AN,m5
~N21!!

m! ~N2m21!!
. ~A6!

The sumBN,m may then be rewritten as

BN,m5(
rWm
N

(
i 51

m11

~11r i !
2, ~A7!

where each componentr i assumes values between 0 andN
2m21 subject to the constraint of Eq.~A5!:

(
i 51

m11

r i5N2m21. ~A8!

The calculation ofBN,m is given in Appendix B, and the
result is

BN,m5
~m11!~2N2m!N!

~m12!! ~N2m21!!
. ~A9!
re

ed

of

Performing the sum in the denominator of Eq.~A2! taking
Eq. ~A6! into account, we have

^R2&5
N

@11a#N21 F2~N11! (
m50

N21 S N21

m D
3

am

m12
2 (

m50

N21 S N21

m D amG . ~A10!

The first sum may be calculated by noting that

E
0

A

x~11x!N21dx5A2 (
m50

N21 S N21

m D Am

m12
, ~A11!

and, therefore

(
m50

N21 S N21

m D am

m12
5

@11a#N@aN21#11

N~N11!a2
. ~A12!

Substituting this result into Eq.~A10! and performing the
second sum, we finally obtain the expression

^R2&5
2@11a#

a2 FNa211
1

@11a#NG2N. ~A13!

APPENDIX B: DERIVATION OF BN,m

In this appendix we want to derive Eq.~A9! for BN,m .
Using Eq.~A8! and defining for convenienceN5N2m21,
Eq. ~A7! is rewritten as

BN,m5~m11! (
j 50

N11
~N1m2 j !! j 2

~N112 j !! ~m21!!
. ~B1!

Redefining the summation variable withi 5N112 j , this
equation turns out to be

BN,m5~m11!(
i 50

N
~N112 i !2

~ i 1m21!!

i ! ~m21!!
. ~B2!

Using the equality

(
i 50

N
~m1 i !!

m! i !
5

~m1N11!!

~m11!!N!
, ~B3!

after some manipulation we obtain

BN,m5~m11!H ~N11!
~N111m!!

N!m!
22~N11!

3
m~N111m!!

N! ~m11!!
1 (

i 51

N11
~ i 1m21!! i

~ i 21!! ~m21!! J .

~B4!

The last summation to be dealt with is just

(
i 51

N11
~ i 1m21!! i

~ i 21!! ~m21!!
. ~B5!
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Defining j 5 i 21, it follows that

(
j 50

N
~ j 1m!! ~ j 11!

j ! ~m21!!
5

m~N1m11!!

N! ~m11!!

1m~m11!
~N1m11!!

~N21!! ~m12!!
.

~B6!
n,

,
.

Substitution into Eq.~B4! leads to

BN,m5
~m11!~N1m11!! @2N1m12#

~m12!!N!
. ~B7!

SubstitutingN5N2m21, we obtain

BN,m5
~m11!~2N2m!N!

~m12!! ~N2m21!!
. ~B8!
cs
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